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Abstract: The nucleosome is composed of histones and DNA. Prior to their deposition on chromatin,
histones are shielded by specialized and diverse proteins known as histone chaperones. They escort
histones during their entire cellular life and ensure their proper incorporation in chromatin. Physarum
polycephalum is a Mycetozoan, a clade located at the crown of the eukaryotic tree. We previously found
that histones, which are highly conserved between plants and animals, are also highly conserved in
Physarum. However, histone chaperones differ significantly between animal and plant kingdoms, and
this thus probed us to further study the conservation of histone chaperones in Physarum and their
evolution relative to animal and plants. Most of the known histone chaperones and their functional
domains are conserved as well as key residues required for histone and chaperone interactions.
Physarum is divergent from yeast, plants and animals, but PpHIRA, PpCABIN1 and PpSPT6 are
similar in structure to plant orthologues. PpFACT is closely related to the yeast complex, and the
Physarum genome encodes the animal-specific APFL chaperone. Furthermore, we performed RNA
sequencing to monitor chaperone expression during the cell cycle and uncovered two distinct patterns
during S-phase. In summary, our study demonstrates the conserved role of histone chaperones in
handling histones in an early-branching eukaryote.

Keywords: histone chaperones; protein domains; phylogeny; cell cycle; Physarum

1. Introduction

In eukaryotes, DNA is wrapped around histone octamers to form the chromatin. The
basic subunit of chromatin is the nucleosome and consists of 147 bp of DNA wrapped
around a tetramer of histones H3 and H4, flanked by two dimers of histones: H2A and
H2B [1]. Besides these four histones, there is a fifth histone, H1, also known as the linker
histone as it binds to the linker DNA between nucleosomes. Histones are among the
most conserved proteins in eukaryotes. Each family of histones (H1, H2A, H2B, H3, H4)
is represented by several isoforms. These histone isoforms are classified based on their
timing of expression during the cell cycle [2,3]: (i) canonical histones are synthetized during
S-phase and used for chromatin replication, while (ii) replication-independent histones are
produced throughout the cell cycle and are required for specialized functions at chromatin
and named histone variants. Beyond its role in DNA compaction, chromatin carries
the epigenetic information, and is a highly dynamic compartment since all mechanisms
operating on DNA (e.g., replication, transcription and DNA repair) require the eviction,
storage and deposition of histones in chromatin.
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After translation, histone proteins have to be translocated from the cytoplasm to the
nucleus and incorporated at the right place and time in chromatin. In the context in which
various cellular machineries need access to DNA, histones oftentimes need to be transiently
evicted from chromatin and stored. Since histones are highly basic and charged proteins,
their presence as “free” proteins in the cell can have deleterious effects. Hence, when histones
are not incorporated in chromatin, they are always escorted by specialized proteins known
as histone chaperones to form the so-called soluble histone pool. Histone chaperones ensure
histone incorporation in chromatin, and also participate in transporting and storing histones
and recycling them when they are evicted from chromatin. Because of all these roles, histone
chaperones are crucial players that regulate the histone cellular supply. Categorization of
histone chaperones is typically based on the specific histone isoform they interact with, or the
cellular mechanism (e.g., replication) in which they are involved [4]. We can summarize the
histone chaperone network, from histone biogenesis to chromatin incorporation, as shown
in Figure 1, which represents the chaperone network from proteins identified in Physarum.
The heat shock proteins HSC70 and HSP90 (70- and 90-kDa Heat Shock Proteins) are early
cytoplasmic chaperones that assist with H3 and H4 folding [5,6]. HAT1 participates with the
NASP-p46RbAp46-ASF1-IPO4 complex for H3/H4 nuclear import [5,7] and is conserved in
Physarum [8]. The ASF1 chaperone is the main histone donor that shuttles H3/H4 from the
cytoplasm to the nucleus, and transfers H3/H4 to the histone deposition complexes CAF-1
and HIR [5,9]. The CAF-1 complex mediates canonical H3.1/H4 nucleosomal assembly
during replication [10]. The variant H3.3 is either incorporated in chromatin by a gap filling
mechanism or histone replacement (i.e., substitution of canonical histones by their variants)
by several complexes such as the HIR complex [11]. MCM2 is part of the replicative helicase
that co-operates with several chaperones to handle histones during replication [12], while the
accessory subunit of the Polε polymerase PolE3 participates in the deposition of parental and
newly synthesized H3/H4 in chromatin.

Similar to H3/H4, H2A/H2B necessitate several histone chaperones, but they are less
well characterized so far. The NAP family contributes to the nuclear import of H2A/H2B
and H2A.Z/H2B and deposition of H2A/H2B in chromatin [13]. During processes such as
developmental transitions, a global transcription reprogramming is achieved via chromatin
remodeling and through substitution of canonical histones by histone variants, a process
called histone replacement. The SWR-C complex is involved in H2A.Z/H2AB deposition in
chromatin [14–18]. The FACT complex enables the displacement and turnover of H2A/H2B
dimers [19]. Furthermore, NAP and FACT proteins are involved in the recycling of parental
H3/H4 and H2A/H2B histones and deposition of newly synthetized histones during replication.
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cytoplasm. Then, the HAT1-NASP (Nuclear Autoantigenic Sperm Protein)-CAF1C (Chromatin As-
sembly Factor 1C)-ASF1 (Anti-Silencing Factor 1)-IPO4 (ImPortin 4) complex ensures the H3/H4 
nuclear import. The NAP (Nucleosome Assembly Protein) family contributes to the nuclear import 
of H2A/H2B. Once H3/H4 proteins reach the nucleus, ASF1 is the main histone donor that transfers 
them to the histone deposition complexes CAF-1 (Chromatin Assembly Factor-1) and HIR (HIstone 
Regulator). The CAF-1 complex deposits H3.1/H4 during replication, while the HIR complex de-
posits H3.3/H4 during the whole cell cycle in chromatin. The NAP proteins ensure deposition of 
H2A/H2B in chromatin. The SWR-C (SWR1 Remodeling-Complex, SWi2/snf2-Related 1) complex 
is involved in the histone exchange reaction to deposit H2A.Z/H2AB in chromatin. It is composed 
of SWR1 (SWi2/snf2-Related 1) and SWC2 (SWr Complex 2). 

During replication, MCM2 participates in the unwinding of the dsDNA which seems 
to disrupt nucleosomes. The H2A/H2B dimers are evicted and escorted by the FACT (FA-
cilitates Chromatin Transcription) complex. Before eviction of H3/H4 tetramers, ASF1 is 
recruited to form the MCM2-H3/H4-ASF1 co-chaperone complex. After the passage of the 
replication fork, parental histones are recycled and deposited along with newly synthe-
tized histones thanks to the CAF-1 and FACT complexes and NAP proteins. Moreover, 
PolE3 also participate in the deposition of parental and newly synthesized H3/H4 in chro-
matin on the leading strand of DNA. 

During transcription, nucleosomes are disassembled to enable the passage of the 
RNA polymerase II. The SPT6 (SuPpressor of Ty 6) and ASF1 chaperones, the NAP pro-
teins as well as the HIR, FACT and SWR-C participate in the restoration of the chromatin 
landscape after the RNA polymerase II passage by mediating histone recycling or depo-
sition in the wake of the polymerase. During DNA repair after DNA damage (labelled by 
an orange cloud), γH2A.X histones are deposited at double strand DNA breaks and then, 
when repair is complete, they are removed by the SWR-C complex to be replaced by 
H2A/H2B or unmodified H2AX/H2B by the FACT complex. The HIR and CAF-1 com-
plexes, as well as the APLF chaperone, participate in the re-establishment of histones in 
chromatin. Since the sub-functionalization of PpNAP1L1 and PpSET remains to be inves-
tigated, they were indicated as NAP. 

Besides replication, transcription also depends on restoring the chromatin landscape 
after passage of RNA polymerase II, and several histone chaperones such as SPT6, FACT, 
ASF1, HIRA or NAP proteins participate in this mechanism. Thus, histone chaperones 
strongly cooperate in a network to fulfill histone cellular supply. We previously reported 

Figure 1. Schema of the histone chaperone network in Physarum polycephalum. Histone proteins are
synthetized in the cytoplasm by the ribosome. H3 and H4 are taken in charge by the heat shock proteins



Int. J. Mol. Sci. 2023, 24, 1051 3 of 21

HSC70 (Heat Shock Cognate 70) and HSP90 (90-KDa Heat Shock Protein) that assist their folding
before H4 get diacetylated at lysines 5 and 12 by HAT1 (Histone Acetyl Transferase 1) in the cytoplasm.
Then, the HAT1-NASP (Nuclear Autoantigenic Sperm Protein)-CAF1C (Chromatin Assembly Factor
1C)-ASF1 (Anti-Silencing Factor 1)-IPO4 (ImPortin 4) complex ensures the H3/H4 nuclear import.
The NAP (Nucleosome Assembly Protein) family contributes to the nuclear import of H2A/H2B.
Once H3/H4 proteins reach the nucleus, ASF1 is the main histone donor that transfers them to the
histone deposition complexes CAF-1 (Chromatin Assembly Factor-1) and HIR (HIstone Regulator).
The CAF-1 complex deposits H3.1/H4 during replication, while the HIR complex deposits H3.3/H4
during the whole cell cycle in chromatin. The NAP proteins ensure deposition of H2A/H2B in
chromatin. The SWR-C (SWR1 Remodeling-Complex, SWi2/snf2-Related 1) complex is involved
in the histone exchange reaction to deposit H2A.Z/H2AB in chromatin. It is composed of SWR1
(SWi2/snf2-Related 1) and SWC2 (SWr Complex 2). During replication, MCM2 participates in
the unwinding of the dsDNA which seems to disrupt nucleosomes. The H2A/H2B dimers are
evicted and escorted by the FACT (FAcilitates Chromatin Transcription) complex. Before eviction of
H3/H4 tetramers, ASF1 is recruited to form the MCM2-H3/H4-ASF1 co-chaperone complex. After
the passage of the replication fork, parental histones are recycled and deposited along with newly
synthetized histones thanks to the CAF-1 and FACT complexes and NAP proteins. Moreover, PolE3
also participate in the deposition of parental and newly synthesized H3/H4 in chromatin on the
leading strand of DNA. During transcription, nucleosomes are disassembled to enable the passage
of the RNA polymerase II. The SPT6 (SuPpressor of Ty 6) and ASF1 chaperones, the NAP proteins
as well as the HIR, FACT and SWR-C participate in the restoration of the chromatin landscape after
the RNA polymerase II passage by mediating histone recycling or deposition in the wake of the
polymerase. During DNA repair after DNA damage (labelled by an orange cloud), γH2A.X histones
are deposited at double strand DNA breaks and then, when repair is complete, they are removed by
the SWR-C complex to be replaced by H2A/H2B or unmodified H2AX/H2B by the FACT complex.
The HIR and CAF-1 complexes, as well as the APLF chaperone, participate in the re-establishment
of histones in chromatin. Since the sub-functionalization of PpNAP1L1 and PpSET remains to be
investigated, they were indicated as NAP.

Besides replication, transcription also depends on restoring the chromatin landscape
after passage of RNA polymerase II, and several histone chaperones such as SPT6, FACT,
ASF1, HIRA or NAP proteins participate in this mechanism. Thus, histone chaperones
strongly cooperate in a network to fulfill histone cellular supply. We previously reported
a complete description of histones in the Mycetozoan Physarum polycephalum which led
us to conclude that this organism is at the crown of the eukaryotic tree, based on histone
phylogenetic analyses, and its histones are evolutionary closer to animal histones than
plant proteins [20]. Since histones are highly conserved in Physarum, it raises the questions
regarding (i) the extent of conservation of the histone chaperones (i.e., the histone-binding
partners) in Physarum and (ii) to which kingdom (from plants and animals) they are most
evolutionarily related.

Physarum polycephalum belongs to the Mycetozoans. This organism presents a mul-
tiphase life cycle, comprising a vegetative stage named plasmodium which consists of a
syncytium. The syncytium in Physarum is a cytoplasm containing millions of nuclei origi-
nating from nuclear division without cytodiesis. This intriguing structure enables this slime
mold to exist as a giant cell of a size varying from the micrometer to the centimeter scale.
Due to its natural synchrony, Physarum constitutes a unique model to study epigenetic
mechanisms occurring during the cell cycle at the single cell level. In a previous study [20],
our phylogenetic and protein sequence analyses focused on histones from several animals,
plants and unicellular organisms (including Physarum) that led us to position Physarum
in the tree of life, and to identify the various histone isoforms for each of the five histone
families. Here, we performed an in-depth study that identified histone chaperones in
Physarum. We carried out a comparative analysis of histone chaperone sequences that
showed a deep conservation of characteristic domains and key residues. In addition, we
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carried out transcript quantitative analyses by RNA-seq throughout the cell cycle, which
showed two main expression patterns of histone chaperones during the cell cycle. Our
comprehensive analyses suggest that most components of the sophisticated chaperone
network that escort histones are highly conserved in Physarum, and that this slime mold is
located at the crown of the eukaryotic tree.

2. Results
2.1. Genome-Wide Identification of Histone Chaperones in Physarum

We used the Physarum reference transcriptome [21] to identify the Physarum ortho-
logues of the main human histone chaperones. We identified 21 genes and their correspond-
ing transcripts encoding chaperone orthologues in Physarum (Figure 2, Table S1, Figure
S1). Only a single orthologue was found in Physarum for the human histone chaperones
Hs-p46RbAp46 and Hs-p48RbAp48 (Table S1). The NAP family is very large and displays a
complicated phylogenetic history, and the Physarum genome only encodes two proteins
from this family: PpSET (named after the closest human homolog HsSET) and PpNAP1L1
(naming based on its sequence similarity with HsNAP1L1) (Table S1). We did not find or-
thologues of the vertebrate CENP-A chaperone HJURP, the mammalian H2A.Z chaperone
ANP32E and the yeast Chz1 and Rtt106 proteins. Finally, no orthologues were found in
Physarum for several chaperones present in vertebrates and Arabidopsis (i.e., the H3/H4
chaperones DEK, TSK/TONSL, SPT2 and ATRX/DAXX; the NPM proteins involved in
various processes) despite the presence of their histones.
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Figure 2. Distribution of histone chaperones in eukaryotes. Selected species used in this study from
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various histone chaperones (rows) in the 14 species (columns) is displayed. Absence (0) of a given
protein is highlighted in yellow. Atr: Amborella trichopoda; At: Arabidopsis thaliana; Ce: Caenorhabditis
elegans; Dd: Dictyostellium discoideum; Dr: Danio rerio; Dm: Drosophila melanogaster; Hs: Homo sapiens;
Mm: Mus musculus; Pp: Physarum polycephalum; Ppa: Physcomitrella patens, Sc: Saccharomyces cerevisiae;
Tt: Tetrahymena thermophila; Zm: Zea mays.

2.2. Phylogenetic Study of the Putative Histone Chaperones in Physarum

In order to analyze conservation among members of each histone chaperone family,
we generated phylogenetic trees of the Physarum histone chaperones and their orthologues
from several eukaryotic model organisms. In the majority of trees, the animal ortho-
logues cluster together as one branch, the plant orthologues form a second branch and the
Physarum proteins cluster together with the orthologues from D. discoideum (Figure S2).
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This organization was found for HSP90 and HSC70 (Figure S2A,B), IPO4 and ASF1 and
CAF1A (Figure S2D–F), HIRA (Figure S2I), CABIN1 (Figure S2K), SSRP1/Pob3 (Figure
S2M), MCM2 and PolE3 and SPT6 and SWR1 and SWC2 (Figure S2O–S). For the other
chaperones, the tree structure is similar, but with Physarum, D. discoideum and T. thermophila
belonging to the same clade (NASP, Figure S2C; CAF1B and CAF1C, Figure S2G,H; SPT16,
Figure S2N), and with yeast for the UBN orthologues (Figure S2J). Regarding APLF, only
animals, T. thermophila and Physarum encode orthologues of this protein, although they
are pretty divergent in these lineages (Figure S2P). To conclude, Physarum chaperones
are related to their D. discoideum counterparts, as expected, and diverge from the other
studied organisms.

2.3. Protein Sequence and Structure Conservation of the Physarum Histone Chaperones

We then investigated if the 21 histone chaperones that we identified in Physarum
exhibit conserved features (i.e., protein domains and key residues known to be involved
for histone-chaperone and/or chaperone-chaperone interactions) with those of three model
species (H. sapiens, S. cerevisiae and A. thaliana). These three species were chosen based on the
data availability for the studied chaperones. Our study analyzed each of the 21 chaperones
identified in Physarum ordered according to their role in the cellular life of histones as
defined in Figure 1, focusing first on H3/H4 chaperones.

2.3.1. The H3/H4 Chaperones Involved before Chromatin Incorporation

The heat-shock proteins HSP90 and HSC70 promote histones H3 and H4 folding and
heterodimerization in the cytoplasm [5]. HSP90 proteins have several functional domains
that are conserved in Physarum (Figure 3A and Figure S3). Like other HSC70s, PpHSC70
contains the three conserved structural domains associated with this protein (Figure 3B
and Figure S3). The histone chaperone NASP is a non-specific chaperone interacting
with H1, H3 and H3/H4 as well as a CenH3 in Arabidopsis [22,23] and in S. pombe [24].
The PpNASP protein presents the characteristic four TPR involved in H1 and H3/H4
binding [25,26] and one SHNi-TPR (Sim3-Hif1-NASP interrupted TPR) characteristic of
NASP proteins as well as a “E/D-rich” region (Figure 3C and Figure S4). The nuclear
translocation protein IPO4 is involved in the nuclear import of H3/H4 dimers [7]. PpIPO4
presents a conserved architecture (Figure 3D), as well as most of the residues involved
in the interaction with H3 and H4 (Figure S5D,E). The ASF1 chaperone is considered
the histone donor for the replication-dependent and -independent pathways of histone
H3/H4 incorporation into chromatin [27]. While the ASF1 N-termini are highly conserved
(50–60% of identity for the first 155 amino acids, Figure S6), the ASF1 C-termini are rather
divergent in size (Figure 3E) and sequence (Figure S6). Moreover, most residues involved
in H3/H4 binding [27,28] are conserved in PpASF1 (Figure S6, in green) as well as those
involved in chaperone-chaperone binding [9,29] (Figure S6 in blue). These various findings
suggested a conserved H3/H4 network in Physarum for histone folding, maturation and
nuclear import.

2.3.2. The H3/H4 Chaperones Involved in Chromatin Incorporation

The replication-associated assembly complex CAF-1, ASF1 and the DNA replication
machinery coordinately deposit H3/H4 in chromatin during replication. The Physarum
CAF-1 heterotrimeric complex consists of PpCAF1A, PpCAF1B and PpCAF1C, which corre-
spond to the large, middle and small subunits of the complex, respectively. Aside from the
A domain flanked by the KER and “E/D-rich” domains, CAF1A structures differ drastically
between human and other species, notably in their C-termini (Figure 4A). For instance, ani-
mal CAF1A proteins display two PCNA-interacting protein (PIP) motifs, whereas Physarum
and other organisms only contains the second motif (PIP2) (Figure 4A [30]. PpCAF1B har-
bors domains that are characteristic of the middle CAF-1 subunit. However, while Hs-p60
contains clustered WD40 repeats in its N-terminal and two B-like domains, PpCAF1B and
its yeast and Arabidopsis orthologues display one WD40 repeat in their C-termini and only
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one B-like domain (Figure 4B). CAF1C proteins also have several WD40 repeats located in
the internal region (Figure 4C), and all residues involved in H4 interaction [31] are strictly
conserved in PpCAF1C (Figure S7I,J). Thus, the CAF-1 complex is overall conserved in
P. polycephalum, but is more similar in domain structure to the Arabidopsis orthologue.
The replication-independent assembly complex HIR preferentially deposits H3.3/H4 in
chromatin in a replication-independent manner [32]. The Physarum complex consists of
PpHIRA, PpUBN and PpCABIN1. PpHIRA presents a similar domain organization to
AtHIRA, with several WD40 repeats located in the N-terminal and an additional one just
before the HIRA domain (Figure 4D). The GRRRIxPLxI motif (with x being any amino
acid) involved in ASF1 interaction [9] (Figure S8B) and the HIRA domain involved in
CABIN1 binding ([33]; Figure S8C) are strongly conserved in Physarum. PpUBN presents
a domain organization most similar to Arabidopsis UBNs, with a C-terminal middle do-
main and comparable protein length (Figure 4E). The HRD domain of HsUBN1 provides a
H3.3-binding specificity to the HIR complex [32]. Six out of seven key residues identified
for their role in histone binding [32] are strictly conserved (Figure S8E, in green); for the
non-conserved residue, there is a N/D substitution in plants, yeast, T. thermophila, C. elegans
and myxomycetes. PpCABIN1 presents a similar domain organization to AtCABIN1 with
grouped in TPR islands, while TPRs are distributed on the whole yeast and human proteins
(Figure 4F). Thus, the HIR complex is largely conserved in P. polycephalum, with a domain
structure closer to plants. Therefore, we can conclude that the H3/H4 chaperones involved
in chromatin incorporation are conserved in Physarum with a protein domain structure
closer to Arabidopsis.
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Figure 3. Functional Domains of histone chaperones involved in the cytoplasm. Each diagram
displays a scaled representation of the domain structure for HSP90 (A), HSC70 (B), NASP (C), IPO4
(D), ASF1 (E) histone chaperones from Physarum, yeast, human and Arabidopsis. Each domain is
depicted at its position by a different color, and the code is indicated at the right. Names of domains
involved in histone binding are in bold and underlined. NBD, N-terminal Nucleotide Binding
domain; SBD, Substrate-Binding Domain; TPR, tetratricopeptide-like bi-helical repeats; SHNi-TPR,
Sim3-Hif1-NASP interrupted TPR; ED-rich, domain rich in glutamic acid and aspartic acid; HEAT,
Huntingtin/Elongation factor 3/protein phosphatase 2A/TOR1.

2.3.3. The H2A/H2B Chaperones

The identification of NAP proteins relies on the presence of the NAP central domain,
which enabled us to identify PpSET and PpNAP1L1 (Figure 5A). NAP proteins are acidic
proteins (~29% and 24% of D/E residues for PpSET and PpNAP1L1, respectively), the
acidic domain being terminal (Figure 5A) for NAP proteins of groups C and D (Figure S2L).
Two motifs are involved in histone binding (NAP1L and Cap-Claw-Anchor). Both were
retrieved in PpNAP1L1, but PpSET only harbors the Cap-Claw-Anchor motif since the
NAP1L motif is absent from SET proteins (Figure S9C,D). Histone-binding regions and key
residues reported in yeast, C. elegans and Arabidopsis [34,35] are species-specific and, thus,
only few residues are conserved in Physarum. Thus, we could speculate that PpNAP1L1 and
PpSET are bona fide histone chaperones. The FACT complex is composed of two subunits
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SPT16 and SSRP1. PpSPT16 presents well conserved domains (Figure 5B). Of the residues
important for H3/H4 interaction [36], K692-ScSPT16 is only conserved in yeast and animals
while R693-ScSPT16 is conserved in yeast, animals and slime molds (Figure S10C, in
green). The SPT16 C-terminal domain is an intrinsically disordered acidic region containing
(~47% of acid residues in ScSPT16 and ~33% in PpSPT16). Most SSRP1 proteins display
5 structural domains but ScPob3 and PpPob3 (Figure 5C) and TtSSRP1 and DdSSRP1 [37]
present only three: the HMG domain is absent from these four proteins. ScPob3 forms
a complex with ScSPT16 and ScNHP6 which provides the HMG-box function [38]. We
identified 5 putative NHP6 orthologues in Physarum (PpNHP6A-E, Figure 5D) which might
provide the HMG box function. Besides, the H2B-binding motif D/Exxϑ (where ϑ is F or Y,
and x is any residue; [39]) is strongly conserved in PpSPT16 (Figure S11C, in green). Hence,
our data strongly suggests that the Physarum FACT complex is related to the yeast one.
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2.3.4. The DNA Replication-Associated Histone Chaperones

MCM2 can associate with H3/H4-ASF1 [12], as well as with histone-FACT during
replication [40] and with all H3 isoforms (H3.1, H3.3 and CENP-A) [41]. Indeed, PpMCM2
presents a HBD (Histone Binding domain; Figure 5E) [12,40]. Key residues for H3/H4
binding (Figure S12A, in green) and association with the histone-FACT complex [40] (Figure
S12A, purple asterisk) are conserved in all analyzed species including Physarum, except
M117-HsMCM2 which is restricted to the animal kingdom (Figure S12A, in orange). The
DNA polymerase PolE is composed of four subunits in mammals, and is responsible for
DNA synthesis on the leading strand during replication. PolE3 and PolE4 are the small
subunits of this complex [42] and are H3/H4 chaperones. We found a bona fide Physarum
orthologue only for PolE3 (Figure 5F) but none for PolE4, suggesting that PolE might
comprise only three components in Physarum. Functional domains of PolE3 are conserved
in PpPolE3, but the αC helix characteristic of the H2B family is much shorter in PpPolE3
(Figure S13B). Thus, functions of Physarum MCM2 and PolE3 histone chaperones might be
similar to those of animals, plants and yeast.
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2.3.5. The Chaperones Associated with Histone Recycling and Exchange

SPT6 is associated with the recycling of modified histones during transcription [43].
While PpSPT6 exhibits a conserved structure for the core region (Figure 6A), it also con-
tains the plant specific WG/GW domain (Figure 6A and Figure S14A). Moreover, the
F249-ScSPT6 residue involved in nucleosome binding [44] is strongly conserved in PpSPT6
(Figure S14B). Hence, based on the presence of the WG/GW domain, PpSTP6 is more
similar to plant proteins than to their animal homologs. During chromatin remodeling, the
H2A.Z/H2B variant exchange is performed by the SWR-C complex [14–18], a multicompo-
nent complex with two proteins that have histone chaperone activities: the SWR1 catalytic
subunit and the SWC2 (aka Vps72 or YL1) accessory subunit. Physarum encodes one SWR1
orthologue, while some organisms such as human, mouse, fish and Xenopus have two
(Figure 6B); human orthologues are Hs-p400 and HsSCRAP. The ScSWR1 N-terminal region
is responsible for H2A.Z binding [45] but key residues [46] are not conserved across studied
species (Figure S15D). Besides, some SWR1 orthologues have a SANT domain, such as
PpSWR1, Hs-p400 and AtPIE1 (Figure 6B and Figure S15D). PpSWC2 is the Physarum
orthologue of ScSWC2 and animal YL1 proteins. SWC2 proteins harbor a widely conserved
Z domain (Figure 6C) responsible for H2A.Z binding and selectivity. The DmYL1 key
residues [47] are widely conserved (Figure S15E; in blue) as well as the RxxR motif (x for
any residue, Figure S15E; in pink) that anchors ScSWC2 to the nucleosome surface [48].
Hence, the SWR-C complex is similar to those of animals, plants and yeast. APLF is a
DNA-damage response protein that chaperones histones at DNA damage sites. While
the plant kingdom and several studied organisms such as yeast do not encode an APLF
orthologue, we retrieved one in P. polycephalum. However, mammalian APLF proteins
exhibit tandem PBZ domains while the other APLFs, including PpAPLF, display a single
PBZ located at the very end of the protein (Figure 6D). Hence, only mammalian proteins
have an acidic tail (Figure 6D), responsible for interaction with core histones [49]. For slime
mold, it was reported that the acidic tail is integrated in XRCC1 [49]. Indeed, we found in
PpXRCC1 an acidic domain similarly to XlXRCC1 and DrXRCC1 (Figure 6E). Moreover,
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these acidic domains display the NAP1L and the H2A-H2B binding cap-anchor motifs as
well as the KR-motif (KR, lysine/arginine) [49,50]. (Figure S16B). Since the acidic domain
required for histone binding is integrated in PpXRRC1, Physarum may display a mechanism
in which APLF and XRRC1 cooperate to chaperone histones at DNA damage sites and
trigger repair similar to Xenopus and zebrafish.
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Figure 6. Functional Domains of histone chaperones involved in transcription, replacement and
DNA repair. Each diagram displays a scaled representation of the domain structure for SPT6 (A),
SWR1 (B), SWC2 (C), APLF (D), histone chaperones from Physarum, yeast, human and Arabidopsis.
Diagrams for XRCC1 (E) display a scaled representation of this protein from Physarum, yeast, human,
Xenopus, D. rerio and Arabidopsis. Human possesses two SWR1 orthologues named Hs-p400 and
HsSCRAP. Each domain is depicted at its position by a different color and the code is indicated
at the right. Names of domains involved in histone binding are in bold and underlined. HtH,
Helix-turn-Helix; HhH, Helix-hairpin-Helix; HHH, HHH domain 9; S1, S1 RNA-binding domain;
SH2, Src-homology 2 domain; WG/GW, domain containing Glycin (G) and Tryptophan (W) repeats;
HSA, Helicase/SANT-associated; SANT, Swi3/Ada2/N-Cor/TFIIIB; polyQ, poly-glutamine domain;
FHA, ForkHead-Associated; PBZ, PolyADP-ribose-Binding Zinc-finger; BRCT, BRCA1 C-terminal.

Based on the above detailed analyses, we could state that most chaperones involved
in histone cellular life are present in Physarum, with some proteins closer to yeast (PpPob3),
animals (PpAPLF) or plants (PpNASP, PpCAF-1, PpHIR, PpUBN, PpSTP6). Therefore,
players of the histone chaperone network are conserved in Physarum, suggesting that
these proteins were present in the last common unicellular eukaryotes, after which some
underwent duplication and gave rise to multiple protein families, such as NAP.

2.4. Analysis of Gene Expression for Histone Chaperones during the Cell Cycle Reveals Two Main
Expression Patterns

While histone gene expression and regulation during the cell cycle has been extensively
studied in various organisms [51,52], little is known about their chaperones. We thus
monitored the expression of the 21 chaperone-coding and the 12 expressed histone-coding
genes in Physarum synchronous plasmodia at specific time points during the cell cycle by
RNA-Seq. The nuclei of Physarum plasmodia are naturally synchronized, providing us
with the opportunity to quantify chaperone transcript levels at specific stages of the cell
cycle. Physarum cell cycle consists of a 0.5 h mitosis, a 3 h S-phase and a 6 h G2-phase with
no G1-phase [53]. We observed two main expression patterns for chaperones: (i) group 1
(PpHSP90, PpNASP, PpASF1, PpCAF1A, PpCAF1B, PpCABIN1, PpMCM2, PpPolE3, PpSPT16,
PpPob3: in yellow on the left) with elevated mRNA levels in early S-phase and late G2
phase, (ii) group 2 (PpCAF1C, PpUBN, PpSWC2, PpSET, PpNAP1L1, PpAPLF: in magenta
on the left) with elevated mRNA levels in mid S-phase (Figure 7A). In group 1, we found
chaperones known to be involved in H3/H4 nuclear import (HSP90, NASP, ASF1), in the
H3/H4 replication-dependent handling (CAF1A, CAF1B, MCM2, PolE3) and the FACT
complex notably implicated in histone handling during replication. In group 2, we found
chaperones involved in more various processes and that can handle canonical histones and
variants. For the CAF-1 complex that incorporates H3.1/H4 during replication in various
organisms, we observed a correlation between PpCAF1A, PpCAF1B and PpHTT1 (PpHTT1
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coding the canonical histone PpH3.1) mRNA levels (Figure 7A,B), CAF1C being involved
in various processes and complexes. On the contrary, PpHIRA and PpUBN mRNA levels
are higher during the mid and late S-phase than in early S-phase or late G2 phase (CABIN1
being involved in various processes) as well as those coding the PpH3.4 and PpH3.5
variants, suggesting that Physarum HIR complex may incorporate PpH3.4 and PpH3.5.
Therefore, chaperones of group 1 may handle the canonical histone pool highly abundant in
early S-phase and late G2 phase, while chaperones of group 2 may handle the less abundant
histone pool during the rest of the S-phase. We also observed a good correlation between
the PpHTA3 (coding PpH2A.Z) and PpSWC2 mRNA levels (Figure 7A,B), PpSWC2 being
part of the complex responsible for H2A.Z replacement. Finally, we noticed that three
chaperones display highly abundant mRNAs compared to the other ones: the two heat
shock chaperones PpHSP90 and PpHSC70, and the PpNAP1L1 chaperone (Table S7). This
might be due to the involvement of PpHSP90 and PpHSC70 in folding of various other
client proteins, and of PpNA1L1 in the incorporation of both H2A/H2B and H3/H4. To
conclude, the abundance of histone transcripts and their associated chaperones correlates
in Physarum, suggesting that histone and chaperone abundance are under the same control.
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observed that Physarum chaperones are phylogenetically divergent from plant and animal 
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1 proteins (one PIP in PpCAF1A, one C-terminal WD40 repeat and one B-like domain in 
PpCAF1B) and (ii) the HIR proteins (the extra WD40 just before the HIRA domain of 

Figure 7. Expression profiles of Physarum histones and chaperones during the cell cycle. The heat
map displays the RNA-Seq expression of histone chaperones (A) and histones (B) at five stages of
the Physarum cell cycle indicated at the bottom of the map. Each row corresponds to a transcript
listed on the right and each column to a cell cycle stage. The color bar at the right depicts the scale
for z-score, with blue representing the lowest expression and yellow representing the highest. In
Figure 7A, chaperones from group 1, i.e., with elevated mRNA levels in early S-phase and late G2
phase are displayed in yellow on the left of the heat map, while chaperones from group 2, i.e., with
an elevated mRNA level in mid S-phase are displayed in magenta. Transcript and protein names are
indicated on the left and the right of the heat map, respectively. The CAF-1 complex is associated
with H3.1/H4 incorporation during DNA replication, and its subunits are displayed in pink (A) as
well as the PpHTT1 transcript coding the Physarum H3.1 protein (B). The HIR complex is associated
with H3 variant incorporation throughout the cell cycle and its subunits are displayed in blue (A),
as well as the PpHTT3/4/5 transcript coding the Physarum H3 variants (B). The SWR-C complex is
involved in H2A.Z/H2B replacement and its subunits are displayed in green (A), as well as the
PpHTA3 transcript coding the Physarum H2A.Z variant (B).

3. Discussion

We performed a comprehensive analysis of the histone chaperones in Physarum and
found that most histone chaperones are conserved in this slime mold. Based on comparative
analyses, we propose that histone folding, transport to the nucleus, supply, turnover
and incorporation in chromatin are cellular functions that are expected to be executed
by the histone chaperone network of Physarum. While histone chaperones in Physarum
display the common feature of histone binding, they do not share extensive sequence



Int. J. Mol. Sci. 2023, 24, 1051 11 of 21

similarity or structural domains [54] compared to orthologues from other eukaryotic clades.
However, since histones are highly basic proteins, many histone chaperones contain acidic
stretches such as E/D-rich regions to shield the histone charge and avoid aggregation and
spurious interactions. IDD regions are flexible and highly dynamic; they may be critical
for chromatin assembly and were reported in human histone chaperones [54]. We used
RAPID (Regression-based Accurate Prediction of Protein Intrinsic Disorder content) [55] to
quantify the disorder content of the 21 uncovered Physarum histone chaperones, and found
that 11 chaperones present a disorder content above 30% (Table S1). Therefore, histone
chaperones in Physarum contain acidic stretches and IDD regions that are shared features
between and with chaperones from well-studied organisms.

Our study highlights the conservation of the histone chaperone domains and key
residues (for histone or chaperone binding) in Physarum compared to common model
organisms. Most histone chaperones of Physarum present conserved domains and key
residues (for histone or chaperone binding) compared to studied organisms. However, we
observed that Physarum chaperones are phylogenetically divergent from plant and animal
orthologues. Nevertheless, it is interesting to note that the domain structure of (i) the CAF-1
proteins (one PIP in PpCAF1A, one C-terminal WD40 repeat and one B-like domain in Pp-
CAF1B) and (ii) the HIR proteins (the extra WD40 just before the HIRA domain of PpHIRA,
a C-terminal ubinuclein middle domain in PpUBN and the three TPR in PpCABIN1) are
closer to the Arabidopsis orthologues. Similarly, the Physarum orthologue of SPT6 contains
a WG/GW domain, as in plants. In contrast, the structure of the FACT complex (the HMG
domain being absent from PpPob3) is more closely related to the yeast complex, and the
animal-specific chaperone APFL is present in Physarum. Interestingly, unlike Physarum,
APLF is absent from plants, yeast, some animals such as C. elegans and Drosophila and also
another Mycetozoan (D. discoideum). This suggests that the APLF chaperone might have
been present in the last common eukaryotic ancestor, and was subsequently lost in certain
lineages or species. Moreover, while the mammalian APLF protein presents an acidic tail,
this domain is translocated to XRCC1 in other species [49]. As this tail is responsible for the
interaction of APLF with histones, PpAPLF and PpXRCC1 might cooperate to ensure his-
tone incorporation at DNA damage sites and to restore the epigenomic landscape. In SPT6,
we found five WG/GW repeats in PpSPT6, whereas PpaSPT6, AtrSPT6, AtSPT6L, ZmSPT6
have 8, 20, 12 and 8 WG/GW repeats, respectively (Figure S14A). These WG/GW repeats
were not originally identified in P. patens [56], most likely due to the incomplete sequences
of SPT6 orthologues at that time (the XP_00175668 and XP _00296188 accession numbers
used for P. patens in that study are not available anymore). Interestingly, the WG/GW
domain is also called the Argonaute hook, since it is required for Argonaute interaction with
other proteins to mediate small RNA-mediated gene silencing in Arabidopsis [56]. Thus,
it will be interesting to assess if PpSTP6 can also interact with the Physarum Argonaute
proteins. Finally, Physarum does not have homologues for the ATRX/DAXX complex.
While mammals, zebrafish and Drosophila express an ATRX/DAXX complex, Arabidopsis
and C. elegans only have ATRX but no identifiable DAXX homolog [57,58]. This suggests
that: (i) Arabidopsis and worm ATRX might interact with a DAXX functional analog or
with other yet unknown partners to trigger H3.3 deposition, while (ii) Physarum might
perform H3.3 deposition only through the HIRA complex. Yeasts are widely used models
to study the maintenance of the epigenetic landscape during replication [59]. Indeed,
they can be synchronized and have a short generation time and only few histone-coding
genes compared to animals [60,61]. However, they display neither H3 variants nor DNA
methylation, while Physarum does [20,62,63]. Moreover, Physarum has a short generation
time, naturally synchronous nuclei, histones coded by one single gene which enable easy
mutagenic analyses, and an ability to incorporate exogenous tagged histones [64]. With its
unique features and shared similarities with yeast, plants and animals, Physarum represents
a pertinent model for epigenetic studies.

In this study, we took advantage of the natural synchrony of Physarum plasmodia
to quantify transcript abundance for the 21 chaperones as well as for the histones. Most
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chaperones showed elevated transcript levels during early S-phase and late G2-phase. Our
previous study in Physarum [20] demonstrated a unique pattern of histone gene expression,
with elevated histone mRNA abundance in late G2 phase and at the beginning of the S-
phase. Thus, it is not surprising that most Physarum histone chaperones also present higher
transcript levels in late G2 phase to match this abundant pool of synthesized histones.
Moreover, PpCAF1A and PpCAF1B presented elevated transcript levels in early S-phase,
which is consistent with known roles of CAF-1 in H3.1/H4 incorporation at replication
forks. In contrast, PpHIRA and PpUBN had higher mRNA levels during the mid and
late S-phase, consistent with known roles of HIR in variant incorporation throughout the
cell cycle. Finally, PpHSP90, PpHSC70 and PpNAP1L1 chaperones had elevated tran-
script levels compared to the other chaperones. The two heat shock proteins (PpHSP90
and PpHSC70) have various binding partners besides the histones. Thus, they should be
present at sufficient levels to mediate widespread protein folding in Physarum. Regarding
PpNAP1L1, we can speculate that since NAP proteins are responsible for the incorporation
of both H2A/H2B and H3/H4, and contribute to histone shuttling and chromatin assembly
during replication and transcription, they are required to be present at higher levels com-
pared to other chaperones. Furthermore, we found a clear dichotomy in expression profile
between chaperones associated with replication (notably PpMCM2, PpPolE3, PpCAF1A
and PpCAF1B) and those that are replication-independent (notably PpHIRA and PpUBN)
(Figure 7A). We investigated whether this pattern could be observed in synchronized cells
of other organisms, but we did not observe such changes in the three human cell lines inves-
tigated (Figure S17C–E) or in yeast cells (Figure S17G). This result is consistent with the fact
that several chaperones are known to control histone gene expression in yeast during the
cell cycle [65]. However, cells of Nicotiana tabacum presented a pattern similar to Physarum,
though with the SWR-C clustering with replication-associated chaperones (Figure S17F).
Therefore, it is tempting to speculate that in Physarum, the abundance of histones during
the cell cycle controls the expression of their chaperones (and subsequently nucleosome
assembly), resulting in a different expression pattern during replication-dependent and
-independent pathways. This feature may be specific to slime molds.

In summary, our work on the histone chaperones of Physarum contributes to a bet-
ter understanding of the conservation of these proteins through evolution. Because of
the strong conservation of histones in eukaryotes, many organisms present similar and
conserved mechanisms for histone handling using chaperones. The characterization of
Physarum histones and their chaperones ([20] and this study) and the use of Physarum giant
cells containing millions of synchronous nuclei open new avenues for the analysis of the
epigenetic landscape and its maintenance during the cell cycle in this organism that shares
features with both animals and plants.

4. Materials and Methods
4.1. Identification of Physarum Genes, Transcripts and Proteins for Chaperones

Public genomic and transcriptomic data from P. polycephalum were obtained from
www.physarum-blast.ovgu.de and former published data [21,66]. Protein sequences from
H. sapiens, M. musculus, D. rerio, D. melanogaster, X. laevis, C. elegans, A. trichopoda, A.
thaliana, Z. mays, P. patens, T. thermophila, D. discoideum and S. cerevisiae were obtained
from UniProt [67] and/or NCBI [68]. In the absence of proteins in both databases, a
BLASTp with the human protein against the proteome of the organism for which no
protein was recorded was performed. For APLF orthologues, one APLF protein was
recorded in UniProt (NP_001097801.1) for D. melanogaster but it does not contain the
characteristic FHA (ForkHead-Associated) domain. Besides, in C. elegans, the CeLig3
protein is only an APLF functional analog [49]. Thus, both proteins were excluded from
our study. For the DrUBN1 protein, only a fragment of the protein is available in the
databases. For UBN and CABIN1 in C. elegans, no orthologues were retrieved in UniProt
or by BLASTp. CePICD-1 (pry-1 interacting CABIN1 domain containing) was found in
the literature as an orthologue of CABIN1 [69]. We did not identify CePQN-80 based on

www.physarum-blast.ovgu.de
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UBN protein sequence homology, but it was added in the phylogenetic analysis based on
a recent study [70]. However, our analysis showed that CePQN-80 is highly divergent
from the other UBNs (Figure S2I). For the NAP family, proteins retrieved for a specific
organism were cleaned from proteins identical at 92-99% on the whole protein. The
Arabidopsis orthologue of PolE3 has not been faithfully identified yet [71] as well as
orthologues for P. patens, T. thermophila, Z. mays, so these species were not included in the
phylogenetic analysis. A local BLASTn (blast 2.6.0) was performed to identify chaperone
homologs in the public P. polycephalum transcriptomes [21,66]. Identified transcripts were
then aligned on the Physarum reference genome [21] to identify the corresponding genes.
A tBLASTn search was also performed on the Physarum reference genome to investigate
if the chaperones with no homologs in the Physarum transcriptomes corresponded to not
expressed genes. No such case was found. All used protein sequences were reported in
Table S2 and are available at https://clipperton.ufip.univ-nantes.fr/physabase/, accessed
on 22 September 2022. Transcripts found to code histone chaperones were reported in
Supplementary Material. More specifically, we did not find homologues either for HJURP
(Holliday Junction Recognition Protein) which is a vertebrate chaperone required for CENP-
A centromeric deposition [24] or for its yeast counterpart Scm3 (Suppressor of chromosome
mis-segregation 3). No homologues were retrieved for the ATRX/DAXX [72] complex and
for the DEK chaperone [73], both being involved in H3.3 deposition. Indeed, although
Phypoly_transcript_06998 was found to encode a putative DEK protein, the encoded
protein does not harbor the DEK characteristic domain, which led us to conclude that
Physarum does not have a DEK orthologue. The H3/H4 chaperone TONSL (TONSuku Like)
firstly identified in Arabidopsis (TONSuku, TSK; [74]) and later in various vertebrates, the
mammalian ANP32E (Acidic Nuclear Phosphoprotein 32 kilodalton E; [75]) and the yeast
Chz1 [76] both being H2A.Z chaperones, the yeast Rtt106 (Regulator of Ty 1 transposition
106) protein involved in replication-coupled H3/H4 incorporation [77], and the SPT2
protein that chaperones H3/H4 during transcription [78] did not present a homologue in
P. polycephalum. Finally, the NPM proteins (NPM1, NucleoPhosMin; NPM2 and NPM3,
NucleoPlasMin 2 and 3) involved in various processes such as chromatin remodeling or
ribosome biogenesis were found in vertebrates but not in yeast [79] and Physarum.

4.2. Phylogenetic Analyses and Protein Sequence Alignments

The chaperone protein sequences were aligned with the Clustal Omega program [80].
Phylogenetic trees were constructed with Mega [81] and the ITOL (Interactive Tree Of Life)
tool [82]. Plant, animal and Physarum proteins were depicted in green, blue and red in
trees, respectively. Proteins from yeast, D. discoideum and T. thermophila were displayed
in black. Using the number of proteins per chaperones families, we clustered the species
using hierarchical clustering (R core team, www.R-project.org, accessed on 23 May 2022).
The Phyre2 [83] and AlphaFold [84,85] web portals were used to create the 3D protein
modelling and the Chimera software [86] for superimposition. Pairwise comparison of
protein sequence identity from Physarum and the other organisms was performed by
performing a NeedleMan-Wunsch global alignment, a needle command in the EMBOSS
suite [87], of each Physarum protein sequence to all its orthologues in the studied organisms
(Table S3). The chaperone protein domains in S. cerevisiae, A. thaliana, H. sapiens and P.
polycephalum were determined from InterProScan (5.55–88.0, [88]) in standalone.

4.3. Identification of Nuclear Export and Localization Signals

The following tools were respectively used to predict the presence of NES (Nuclear
Export Signal) and NLS (Nuclear Localization Signal): http://ehubio.ehu.eus/wregex/
home.xhtml and https://www.novoprolabs.com/tools/nls-signal-prediction, accessed on
6 May 2022 and presence/absence of NES and NLS are listed in Table S5.

https://clipperton.ufip.univ-nantes.fr/physabase/
www.R-project.org
http://ehubio.ehu.eus/wregex/home.xhtml
http://ehubio.ehu.eus/wregex/home.xhtml
https://www.novoprolabs.com/tools/nls-signal-prediction
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4.4. Physarum Material

P. polycephalum strain TU291 was used for this study. Mitosis was monitored on
mitotically synchronous plasmodia by phase contrast microscopy observations [89] to
further harvest synchronous plasmodium fragments at the chosen cell cycle stages.

4.5. Experimental RNA Analysis Procedures

Three mitotically synchronous plasmodia were prepared [89] and harvested, as
described in [20]. Fragments of mitotically synchronous plasmodia were harvested
~10 min before mitosis 2 (late G2 phase), 2 min after mitosis (beginning of S-phase),
1 h after mitosis (mid S-phase), 2.5 h after mitosis (late S-phase) and 5.5 h after mitosis
(beginning of G2 phase). Polyadenylated-enriched RNA samples and cDNAs were
prepared as described in [20]. Quantitative PCR was performed with the SyberGreen
qPCR master mix kit (Thermo Fisher Scientific, Scoresby, VIC, Australia) on a Biorad
Cycler (Bio-Rad, Hercules, CA, USA). Relative transcript levels for each chaperone were
calculated as follows: 106 × E−Ct[chaperone gene]/E−Ct[19S]. RT-qPCR histograms presented
in Figure S17A,B show means of transcript levels ± SE obtained for two independent
PCR amplifications of three biological replicates. Primers used in this study are designed
with https://www.ncbi.nlm.nih.gov/tools/primer-blast/, accessed on 12 April 2022 and
listed in Table S4.

4.6. RNA-Seq Library Construction and Sequencing

At 3 stages during S-phase (2 min after mitosis, early S-phase; 1 h after mitosis, mid
S-phase; 2.5 h after mitosis, late S-phase) and 2 stages during G2 phase (5.5 h after mitosis,
early G2-phase; ∼10 min before mitosis, late G2-phase), RNAs were isolated in triplicates
from 3 mitotically synchronous plasmodia, as described in [20] and then treated with
DNase I (NEB, New England Biolabs, Inc., Ipswich, MA, USA) and purified with phenol-
chloroform extraction. Each replicate from the 5 cell cycle stages was subjected to RNA-seq
library preparation using the NEBNext® Ultra™ II Directional RNA Library preparation
kit (NEB) with NEBNext® Multiplex Oligos for Illumina® (Dual Index Primers Set 1, NEB)
following the manufacturer’s protocol. All 15 libraries were pooled together and run on
one single lane of an Illumina NovaSeq6000 for paired-end sequencing (GEO accession
number PRJNA894126), using a paired-end read length of 2 × 150 bp. List of files were
recapitulated in Table S8. Besides the analysis of gene expression during the cell cycle,
assembled transcripts were used to complete transcript sequences of PpHSP90, PpIPO4,
PpCAF1B and PpNASP.

4.7. Assembly, Quantification and Analysis of RNA-Seq Data

After sequencing of Physarum samples, read quality was evaluated by checking the
number of expected sequences, the GC percentage, the presence of adaptors and the
overexpressed sequences using FastQC [90]. Contamination was checked by aligning
reads against E. coli, Yeast, and PhiX Illumina control genomes. Assembly was performed
with Trinity [91] and quantification with Salmon [92] to generate expression estimation
of the read count (Transcripts Per Million transcripts, TPM). From means generated from
normalized read count (in CPM, count per million), heat maps were generated with RStudio
(version 2022.02.1) with the package “pheatmap” (Version 1.0.12).

4.8. Processing and Analysis of Public RNA-Seq Data

Data from human (HUVEC cells, Human Umbilical Vein Endothelial Cells, GSE211658;
MCF-7 cells, a breast cancer cell line, GSE94479; U2OS cells, a cell line with epithelial
morphology derived from a tibia sarcoma, GSE143275), tobacco TN-90 cells (GSE121032)
and yeast (GSE168699) were downloaded from NCBI. Reads were filtered and trimmed
using fastp (version 0.21.0 with length_required 20 and average_qual 20) [93]. Data
sets were aligned against the human (Hg38) or tobacco TN-90 (Nitab-v4.5) or yeast
(S288C R64) genomes using STAR (version 2.7.2a with “out Filter Mismatch Nmax” = 2,
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“align Intron Max” = 15,000, “align Mates Gap Max” = 15,000, “out Filter Multimap
Nmax” = 100, “win Anchor Multimap Nmax” = 100) [94]. FeatureCounts (version 1.6.4,
parameters: -M -C -O) [95] was used to count the reads/fragments over gene annotation.
Then TPM was computed for each sample, followed by calculation of z-score for the
genes of interest (Table S6).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms24021051/s1. References [56,96–141] are cited only in the Supple-
mentary Material.
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